Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME Commun ; 4(1): ycae019, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38500702

RESUMO

Soil history has been shown to condition future rhizosphere microbial communities. However, previous experiments have also illustrated that mature, adult plants can "re-write," or mask, different soil histories through host plant-soil community feedbacks. This leaves a knowledge gap concerning how soil history influences bacterial community structure across different growth stages. Thus, here we tested the hypothesis that previously established soil histories will decrease in influencing the structure of Brassica napus bacterial communities over the growing season. We used an on-going agricultural field experiment to establish three different soil histories, plots of monocrop canola (B. napus), or rotations of wheat-canola, or pea-barley-canola. During the following season, we repeatedly sampled the surrounding bulk soil, rhizosphere, and roots of the B. napus hosts at different growth stages-the initial seeding conditions, seedling, rosette, bolting, and flower-from all three soil history plots. We compared composition and diversity of the B. napus soil bacterial communities, as estimated using 16S rRNA gene metabarcoding, to identify any changes associated with soil history and growth stages. We found that soil history remained significant across each growth stage in structuring the bacterial bulk soil and rhizosphere communities, but not the bacterial root communities. This suggests that the host plant's capacity to "re-write" different soil histories may be quite limited as key components that constitute the soil history's identity remain present, such that the previously established soil history continues to impact the bacterial rhizosphere communities, but not the root communities. For agriculture, this highlights how previously established soil histories persist and may have important long-term consequences on future plant-microbe communities, including bacteria.

2.
Sci Total Environ ; 926: 171854, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38522550

RESUMO

Reducing the environmental impact of Canadian field crop agriculture, including the reliance on conventional synthesised fertilisers, are key societal targets for establishing long-term sustainable practices. Municipal biosolids (MSB) are an abundant, residual organic material, rich in phosphate, nitrogen and other oligo-nutrients, that could be used in conjunction with conventional fertilisers to decrease their use. Though MBS have previously been shown to be an effective fertiliser substitute for different crops, including corn and soybean, there remain key knowledge gaps concerning the impact of MBS on the resident soil bacterial communities in agro-ecosystems. We hypothesised that the MBS fertiliser amendment would not significantly impact the structure or function of the soil bacterial communities, nor contribute to the spread of human pathogenic bacteria, in corn or soybean agricultural systems. In field experiments, fertiliser regimes for both crops were amended with MBS, and compared to corn and soybean plots with standard fertiliser treatments. We repeated this across four different agricultural sites in Quebec, over 2021 and 2022. We sampled MBS-treated, and untreated soils, and identified the composition of the soil bacterial communities via 16S rRNA metabarcoding. We found no indication that the MBS fertiliser amendment altered the structure of the soil bacterial communities, but rather that the soil type and crop identities were the most significant factors in structuring the bacterial communities. Moreover, there was no evidence that the MBS-treated soils were enriched in potential human bacterial pathogens over the two years of our study. Our analysis indicates that not only can MBS function as substitutes for conventional, synthesised fertilisers, but that they also do not disrupt the structure of the resident soil bacterial communities in the short term. Finally, we suggest that the use of MBS in agro-ecosystems poses no greater concern to the public than existing soil bacterial communities. This highlights the significant role MBS could potentially have in reducing the use of conventional industrial fertilisers and improving agricultural production, without risking environmental contamination.


Assuntos
Fertilizantes , Solo , Humanos , Solo/química , Fertilizantes/análise , Biossólidos , Ecossistema , RNA Ribossômico 16S , Canadá , Agricultura , Bactérias , Microbiologia do Solo
3.
Sci Total Environ ; 922: 171290, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38431163

RESUMO

Municipal biosolids (MBS) are suggested to be abundant, sustainable, inexpensive fertilisers, rich in phosphorus and nitrogen. However, MBS can also contain glyphosate and phosphonates that can degrade to AMPA. Glyphosate-based herbicides (GBH) are used in field crops all over the world. Most glyphosate generally degrades within a few weeks, mainly as aminomethylphosphonic acid (AMPA). AMPA is more persistent than glyphosate, and can accumulate from one crop year to the next. AMPA is phytotoxic even to glyphosate-resistant crops. The aims of this study were to assess whether MBS applications constitute: 1) an additional source of glyphosate and AMPA to agricultural soils with respect to GBH, 2) a significant source of trace metals, and 3) a partial replacement of mineral fertilisation while maintaining similar yields. To this end, four experimental agricultural sites were selected in Québec (Canada). Soil samples (0-20 cm) were collected to estimate the as yet unmeasured contribution of MBS application to glyphosate and AMPA inputs in agricultural soils. MBS applied in 2021 and 2022 had mean concentrations of 0.69 ± 0.53 µg glyphosate/dry g and 6.26 ± 1.93 µg AMPA/dry g. Despite the presence of glyphosate and AMPA in MBS, monitoring of these two compounds in corn and soybean crops over two years showed no significant difference between plots treated with and without MBS applications. For the same site, yields measured at harvest were similar between treatments. MBS application could thus represent a partial alternative to mineral fertilisers for field crops, while limiting the economic and environmental costs associated with their incineration and landfilling. It is also an economic advantage for agricultural producers given the possibility of using fewer mineral fertilisers and therefore reducing the environmental impact of their use.


Assuntos
Herbicidas , Organofosfonatos , Poluentes do Solo , 60658 , Solo , Biossólidos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/análise , Glicina , Quebeque , Fertilizantes , Monitoramento Ambiental , Herbicidas/análise , Minerais , Fertilização , Poluentes do Solo/análise
4.
Appl Environ Microbiol ; 89(1): e0131422, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36629416

RESUMO

Oomycetes are critically important in soil microbial communities, especially for agriculture, where they are responsible for major declines in yields. Unfortunately, oomycetes are vastly understudied compared to bacteria and fungi. As such, our understanding of how oomycete biodiversity and community structure vary through time in the soil remains poor. Soil history established by previous crops is one factor known to structure other soil microbes, but this has not been investigated for its influence on oomycetes. In this study, we established three different soil histories in field trials; the following year, these plots were planted with five different Brassicaceae crops. We hypothesized that the previously established soil histories would structure different oomycete communities, regardless of their current Brassicaceae crop host, in both the roots and rhizosphere. We used a nested internal transcribed spacer amplicon strategy incorporated with MiSeq metabarcoding, where the sequencing data was used to infer amplicon sequence variants of the oomycetes present in each sample. This allowed us to determine the impact of different soil histories on the structure and biodiversity of the oomycete root and rhizosphere communities from the five different Brassicaceae crops. We found that each soil history structured distinct oomycete rhizosphere communities, regardless of different Brassicaceae crop hosts, while soil chemistry structured the oomycete communities more during a dry year. Interestingly, soil history appeared specific to oomycetes but was less influential for bacterial communities previously identified from the same samples. These results advance our understanding of how different agricultural practices and inputs can alter edaphic factors to impact future oomycete communities. Examining how different soil histories endure and impact oomycete biodiversity will help clarify how these important communities may be assembled in agricultural soils. IMPORTANCE Oomycetes cause global plant diseases that result in substantial losses, yet they are highly understudied compared to other microbes, like fungi and bacteria. We wanted to investigate how past soil events, like changing crops in rotation, would impact subsequent oomycete communities. We planted different oilseed crops in three different soil histories and found that each soil history structured a distinct oomycete community regardless of which new oilseed crop was planted, e.g., oomycete communities from last year's lentil plots were still detected the following year regardless of which new oilseed crops we planted. This study demonstrated how different agricultural practices can impact future microbial communities differently. Our results also highlight the need for continued monitoring of oomycete biodiversity and quantification.


Assuntos
Oomicetos , Solo , Solo/química , Oomicetos/genética , Agricultura/métodos , Fungos/genética , Produtos Agrícolas/microbiologia , Rizosfera , Produção Agrícola , Microbiologia do Solo
5.
Environ Microbiol ; 24(8): 3529-3548, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35590462

RESUMO

Soil history operates through time to influence the structure and biodiversity of soil bacterial communities. Examining how different soil histories endure will help clarify the rules of bacterial community assembly. In this study, we established three different soil histories in field trials; the following year these plots were planted with five different Brassicaceae species. We hypothesized that the previously established soil histories would continue to structure the subsequent Brassicaceae bacterial root and rhizosphere communities. We used a MiSeq 16S rRNA metabarcoding strategy to determine the impact of different soil histories on the structure and biodiversity of the bacterial root and rhizosphere communities from the five different Brassicaceae host plants. We found that the Brassicaceae hosts were consistently significant factors in structuring the bacterial communities. Four host plants (Sinapis alba, Brassica napus, B. juncea, B. carinata) formed similar bacterial communities, regardless of different soil histories. Camelina sativa host plants structured phylogenetically distinct bacterial communities compared to the other hosts, particularly in their roots. Soil history established the previous year was only a significant factor for bacterial community structure when the feedback of the Brassicaceae host plants was weakened, potentially due to limited soil moisture during a dry year. Understanding how soil history is involved in the structure and biodiversity of bacterial communities through time is a limitation in microbial ecology and is required for employing microbiome technologies in improving agricultural systems.


Assuntos
Brassica napus , Solo , Bactérias/genética , Secas , Retroalimentação , Raízes de Plantas/microbiologia , Plantas/microbiologia , RNA Ribossômico 16S/genética , Rizosfera , Solo/química , Microbiologia do Solo
6.
Genome Announc ; 4(5)2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27660794

RESUMO

We report here the draft genome sequence of Pseudomonas syringae GR12-2, a nitrogen-fixing, plant growth-promoting bacterium, isolated from the rhizosphere of an Arctic grass. The 6.6-Mbp genome contains 5,676 protein-coding genes, including a nitrogen-fixation island similar to that in P. stutzeri.

7.
Crit Rev Microbiol ; 39(4): 395-415, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22978761

RESUMO

The capacity to produce the phytohormone indole-3-acetic acid (IAA) is widespread among bacteria that inhabit diverse environments such as soils, fresh and marine waters, and plant and animal hosts. Three major pathways for bacterial IAA synthesis have been characterized that remove the amino and carboxyl groups from the α-carbon of tryptophan via the intermediates indolepyruvate, indoleacetamide, or indoleacetonitrile; the oxidized end product IAA is typically secreted. The enzymes in these pathways often catabolize a broad range of substrates including aromatic amino acids and in some cases the branched chain amino acids. Moreover, expression of some of the genes encoding key IAA biosynthetic enzymes is induced by all three aromatic amino acids. The broad distribution and substrate specificity of the enzymes suggests a role for these pathways beyond plant-microbe interactions in which bacterial IAA has been best studied.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Vias Biossintéticas/genética , Ácidos Indolacéticos/metabolismo
8.
FEMS Microbiol Ecol ; 77(3): 546-57, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21609343

RESUMO

Pseudomonas putida GR12-2 is well known as a plant growth-promoting rhizobacterium; however, phylogenetic analysis using the 16S rRNA gene and four housekeeping genes indicated that this strain forms a monophyletic group with the Pseudomonas syringae complex, which is composed of several species of plant pathogens. On the basis of these sequence analyses, we suggest that P. putida GR12-2 be redesignated as P. syringae GR12-2. To compare the ecological roles of P. syringae GR12-2 with its close relatives P. syringae pathovar (pv.) tomato DC3000 and P. syringae pv. syringae B728a, we investigated their ability to cause disease and promote plant growth. When introduced on tobacco or tomato leaves, P. syringae GR12-2 was unable to elicit a hypersensitive response or cause disease, which are characteristic responses of P. syringae DC3000 and B728a, nor were type III secretion system genes required for virulence detected in P. syringae GR12-2 by PCR or DNA hybridization. In contrast to P. syringae GR12-2, neither of the phytopathogens was able to promote root growth when inoculated onto canola seeds. Although commensals and nonpathogens have been reported among the strains of the P. syringae complex, P. syringae GR12-2 is a mutualist and a phytostimulator.


Assuntos
Doenças das Plantas/microbiologia , Pseudomonas syringae/isolamento & purificação , Pseudomonas syringae/patogenicidade , Brassica/crescimento & desenvolvimento , Brassica/microbiologia , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Dados de Sequência Molecular , Filogenia , Pseudomonas syringae/classificação , Pseudomonas syringae/genética , /microbiologia , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...